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Abstract - The Mars Exploration Rovers surface fault 
protection design was influenced by the need for the solar 
powered rovers to recharge their batteries during the day 
to survive the night.  The rovers were required to 
autonomously maintain thermal stability, and initiate 
reliable communication with orbiting assets or directly to 
Earth, while maintaining their energy balance.  This paper 
will describe the system fault protection design for the 
surface phase of the mission, including hardware 
descriptions and software algorithms. Additionally, a few 
in-flight experiences are described, including the Spirit 
FLASH memory anomaly and the Opportunity “stuck-on” 
heater failure. 
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1 Introduction 
NASA formally approved the Mars Exploration 

Rovers (MER) project in July 2000, with less than three 
years to get to the launch pad.  The two rovers, Spirit and 
Opportunity, launched in 2003, and successfully landed on 
Mars on January 4 and January 25, 2004, respectively.  
Over one year later, they continue to explore Mars in 
extended mission operations. 

Fault protection1 for these rovers was incorporated 
into every subsystem, built into hardware and software, and 
system engineered to make sure it all works well together.  
Fault protection objectives and priorities varied depending 
on the phase of the mission.  During the cruise to Mars, 
there were no time-critical events, so the system fault 
protection design was required to put the spin-stabilized 
spacecraft in a power positive, communicative, and 
thermally stable state.  During Entry, Descent, and Landing 
(EDL), an extremely time-sensitive period, the fault 
protection system was designed to use all available 
resources to ensure a safe landing.  For surface rover 
operations, time was a consumable for the prime 90-sol2 
mission.  The fault protection design had to protect the 
mission science objectives without compromising vehicle 
                                                             
1 Per Ref [1], fault protection refers to the treatment of faults in 
the design and operation of a system.  Onboard fault protection, 
also known as Flight System Fault Detection, Isolation, and 
Recovery, is the mitigation after faults have caused errors.  
2 A sol is a Martian day, 24 hours 37 minutes long. 

health.  A quick recovery back to nominal operations in the 
event of a fault was a primary goal. 

2 System Description 
The solar powered rovers require a “sleep mode” to 

recharge the batteries each sol.  Sleep mode includes 
powering off the rover avionics, including the Central 
Processing Unit (CPU), so the hardware must maintain the 
safe thermal and power states. Communication requires 
flight software, so the rover must reliably wake from sleep 
mode and initiate communication, without intervention 
from the operations team.  

 

Figure 1:  Mars Exploration Rover Detail 

2.1 Rover Hardware Overview 
Each rover has one Rad-6000 CPU (Rad6k).  Onboard 

memory includes volatile RAM (128 Mbytes) and EDAC-
protected non-volatile memory so the system can retain 
data without power.  The non-volatile memory consists of 
256 Mbytes of FLASH memory and 11 Mbytes of 
EEPROM3. 

                                                             
3 There is no EDAC protection on the 3 Mbytes of EEPROM that 
comes with the Rad6K.  



Redundant mechanical thermostats on key 
components keep the system within flight allowable 
temperatures.  The setpoints on the thermostats are 
staggered so only one heater is powered on at a time, but 
the backup heater will still keep the device safe if the 
primary unit fails.  The operations team controls the warm-
up heaters for external actuators and camera electronics. To 
protect against overheating (if a heater switch fails on or if 
the rover is sleeping), a bimetallic thermostat assembly box 
may cut off the heater circuit.4 

Each rover’s power system has solar arrays (providing 
approximately 900 W-hrs per sol at the beginning of the 
surface mission), and two 8 amp-hr Li-Ion secondary 
batteries.  One Battery Charge Board (BCB) with two 
identical sides (each dedicated to one battery) provides 
protection against cell shorts and overdischarge.  The 
power bus is autonomously regulated by the rover shunt 
limiter, which moves excess energy to the shunt circuits.  If 
the rover power distribution unit detects a low bus voltage, 
it will power off non-essential loads, including the CPU. 

The telecom system includes one Small Deep Space 
Transponder  (SDST), two Solid State Power Amplifiers 
(SSPAs), one fixed monopole Low Gain Antenna (LGA), 
one articulated High Gain Antenna (HGA) for tracking the 
Earth, and one UHF radio for communicating with the 
orbiting assets. 

Time knowledge is maintained with a hardware-based 
mission clock while the CPU is powered off.  The mission 
clock FPGA is powered directly from the batteries.  Co-
located on this FPGA is the alarm clock, which is used to 
trigger the BCB to turn on the avionics. 

2.2 Communication Behavior 
The rover fault protection design must establish 

communication autonomously, so the fault protection takes 
advantage of the flight software communication behavior.  
This on-board algorithm performs all the actions required 
to establish and maintain direct-to-Earth (DTE) 
communication or communication with the orbiters as they 
pass overhead.  The operations team loads several weeks’ 
worth of communication windows onboard the rovers.  
These windows contain all the information required to 
perform the communication link, including start time, 
duration, hardware configuration, and rates.  The 
operations team then designs the operational sequences 
around these windows, or if necessary, the windows may 
be modified. 

Before the window transmission time, the flight 
software retrieves data from non-volatile memory and 
prepares the data for transmission.  If requested, the flight 
software will turn on HGA actuator heaters or perform a 

                                                             
4 Ref [2] describes the MER thermal design. 

new attitude estimate by taking images of the sun.  If the 
window specifies the HGA, the flight software will point 
the HGA to track the Earth.  For either DTE or UHF 
windows, the coax and waveguide transfer switches are 
configured, and the X-band power amplifier or UHF is 
turned on at transmit time.  The flight software then feeds 
packetized telemetry to the radio.  At the end of the 
window, the flight software stows the HGA (if it was the 
selected antenna) and turns off the transmitter.  The 
receiver stays on while the rover is awake, so the rover 
remains commandable through the LGA. 

2.3 Shutdown and Wakeup Behavior 
The backbone of the surface fault protection is the 

autonomous shutdown and wakeup behavior.  This 
algorithm wakes up the rover when the solar arrays can 
support the loads required for communication (in receive 
mode), and it puts the rover back to sleep once the solar 
arrays alone can no longer support those loads. This 
strategy maximizes the time for communication with Earth, 
while still allowing the battery to charge.  The amount of 
energy supplied by the batteries during the night for 
survival heating is minimized because energy is dissipated 
inside the rover during the day, and then used as thermal 
inertia during the night. 

Shutdown refers to shutting down the CPU and the 
avionics.  The BCB stays powered, as well as the mission 
clock and alarm clock.  Warm-up heaters and two of the 
science instruments may also stay on while the rest of the 
rover sleeps. 

During nominal operations, the operations team 
designs sequences that command shutdowns and include 
wakeup times to resume the sequence.  Upon each 
commanded shutdown, flight software examines the 
desired time to resume the sequence and the time of the 
next communication window, and then sets the alarm clock 
to the earlier time. 

Two triggers may wake up the rovers:  Solar wakeup 
or the alarm clock.  The BCB declares the solar wakeup 
after the solar array current has been greater than 2.0 amps 
for over 10 minutes (and at least 16 hours have passed 
since the last solar wakeup).  The BCB responds to either 
wakeup signal by turning on the CPU.   

Autonomous shutdown mode is invoked when 
sequences are inactive or in stasis. In this mode, the flight 
software will start the shutdown process if there is no 
communication window active, and either the solar array 
current is lower than a configurable parameter or the 
vehicle has been awake too long.  If it is time to shut down, 
the alarm clock is again set such that the vehicle will be 
ready for the next communication window or for the 
sequence to resume. 



Figure 2 describes a typical day in autonomous mode, 
with alarm clock wakeups for the UHF passes and solar 
wakeup at 09:00 Local Solar Time (LST). Solar wakeup 
could occur almost anytime in the morning, depending on 

the time of year, the atmospheric dust, the dust on the solar 
panels, and the tilt of the rover. In this scenario, the DTE 
windows occur while the rover is still awake, but the rover 
will wake up for any communication window if necessary. 

 

Figure 2:  Autonomous shutdown and wakeup scenario 

 

 

Figure 3:  Surface fault protection overview



2.4 Surface Fault Protection Overview 
Fault protection on the rovers is handled in a number 

of ways.  This section provides an overview of the rovers’ 
on-board fault protection and gives examples of a few of 
the responses to faults (refer to Figure 3). 

The hardware protection is always available.  For 
example, the BCB FPGA can remove a battery from the 
bus if it detects a low cell voltage, or the BCB can disable 
the battery from charging if it detects a cell overcharge.   

The flight software may try to establish a hardware 
state several times if the read-back state doesn’t match the 
predicted state.  In other cases, the software may just mark 
the data “suspect” so other parts of the flight software may 
take appropriate action.  For example, if the flight software 
detects parity errors in the BCB data, it can mark the data 
“bad”. The autonomous shutdown algorithm then 
disregards the information from that side of the BCB. 

Subsystem level fault protection may declare a 
function unusable.  For example, if a motor overheats while 
moving the IDD (Instrument Deployment Device or 
“arm”), the flight software declares an IDD error.  Other 
sequences continue, but commands to move the IDD are 
rejected.  If the arm is not in the stowed configuration, the 
vehicle safety check will not allow driving, but unrelated 
activities (such as panorama camera imaging or 
communication windows) are allowed to continue. 

If faults are detected in the X-band telecom system or 
there are problems pointing the HGA, the fault response 
will convert the HGA windows to use the LGA with lower 
data rates, at the same scheduled time. 

System fault responses take advantage of the 
autonomous shutdown/wakeup behavior and the 
communication behavior to put the rover in a power-safe, 
thermal-safe, and communicative state.  Responses to flight 
software resets, thermal faults, power faults, and no uplink 
are examples of responses that use autonomous shutdown 
and the communication behavior.   

Software errors are detected either within the 
applications or by a software health function that 
continuously checks for unresponsive or suspended tasks.  
If severe errors are detected, the flight software will force a 
reset of the flight computer, causing a flight software 
initialization.  The system response (after initialization) 
turns off science instruments and warm-up heaters. 
Survival heaters are reinforced on and all sequences are 
deactivated.  After a flight software reset, the vehicle 
continues to perform scheduled communication windows in 
autonomous shutdown mode.   

If the flight software detects a severe error during the 
initialization process, it will delay the reset until a 

minimum time period has passed.  This “delayed reset” is 
intended to allow the operations team to intervene.  If the 
flight software continues to reset, the system will modify 
the delayed reset time interval and the boot logic tries 
alternating copies of the flight software. 

The response to low batteries or power faults does not 
use the scheduled communication windows.  If the rover is 
awake when a low battery situation occurs, the flight 
software has 60 seconds to quickly shut down before the 
BCB removes the batteries from the power bus.  If it is 
nighttime when the BCB detects a low battery condition, 
the BCB takes the battery offline and the power bus 
crashes.  Eventually, when the sun rises, the solar array 
power supports the bus and the BCB.  As the batteries 
charge back up, the BCB puts them back online to support 
the bus.  At the next solar wakeup, the flight software 
schedules one LGA communication window at a 
predetermined hour (11:00 LST) to report to Earth.  No 
UHF windows are attempted because these usually occur in 
the early morning or late afternoon, when the available 
solar power is low.  The vehicle remains in this 
configuration (with autonomous shutdown mode active, in 
receive mode via the LGA, performing one DTE window 
per day) until the operations team reconfigures the vehicle 
to resume normal operations. 

An uplink loss fault is declared upon the expiration of 
the uplink loss timer.  The operations team sets this timer 
every sol, with a value roughly equal to three sols in the 
future.  The operations team may debug problems without 
resetting the timer, but if unsuccessful, the fault response 
takes over at timer expiration.  The response deactivates all 
sequences to initiate autonomous shutdown mode and 
schedules an 11:00 LST DTE window.  The difference 
from the low battery response is that the uplink loss 
response also executes the UHF windows and uses 
different telecom configurations. 

The flight software arbitrates if various fault 
responses conflict.  For example, the system reacts to a low 
battery event by shutting down immediately, then 
autonomously performs only one communication window a 
day.  If, after several days, the operations team still hasn’t 
regained control of the vehicle, the uplink loss response 
will initiate more communication windows, including those 
with the overhead orbiters. 

3 In-flight Experience 
The rovers have experienced subsystem level 

problems with driving, pointing the cameras, operating the 
science instruments, and placing the IDD.  In these cases, 
the flight software appropriately marked those activities 
“unusable” and the sequences continued on.  The more 
severe system level fault experiences are described in this 
section. 



3.1 Cruise Solar Flare 
Although this event happened during the cruise phase 

of the mission, the operations team invoked a surface-
designed behavior to recover the vehicles. On October 28, 
2003, while both rovers were on their way to Mars, a large 
coronal mass ejection (solar storm) occurred.  Star scanners 
on both Spirit and Opportunity were saturated and 3-axis 
attitude knowledge was lost.  The flight software dropped 
the attitude determination mode back to a 2-axis view using 
only the sun sensor.   

Another Mars spacecraft, the Odyssey orbiter, 
detected corrupted RAM due to the same solar storm.  
Since the MER vehicles do not have a “RAM scrubber” 
detection mechanism, there was a fear that there might be 
corrupted areas of RAM which were not accessed during 
cruise, but would be used during EDL. The only way to 
clear any solar flare-induced upset and to ensure a clean 
memory was to power cycle the CPU. Rather than deal 
with the unknown, the MER Project opted to respond as if 
there was a problem.  This involved manually power 
cycling the CPU on both vehicles, using a shutdown 
command, which forced all the hardware and software 
memory checks to run and map around any damaged RAM.  
Wakeup was successfully triggered by the alarm clock, the 
BCB turned on the CPU, and the flight software booted and 
initialized without incident.  No memory corruption was 
detected on either vehicle.  The operations team 
successfully commanded the spacecraft back to the 3-axis 
attitude knowledge mode. 

3.2 Flight Software Initiated Resets 
Both Spirit and Opportunity have suffered flight 

software-initiated resets on Mars.  Only the first events will 
be addressed in this paper.  Spirit’s first reset was the 
FLASH memory anomaly described later and 
Opportunity’s first reset is described here.  

During solar conjunction, the operations team was 
performing a commanding experiment when Opportunity’s 
processor reset.  When the rover receives a command, the 
hardware command decoder (HCD) checks for errors.  The 
HCD corrects all single-bit errors and flags all double-bit 
errors to the flight software.  If three or more errors exist, 
the HCD Single Error Correct/Double Error Detect code is 
overwhelmed and it may erroneously 'correct' already 
corrupted codeblocks or it may not detect any codeblock 
corruption.  In either case, corrupted codeblocks may be 
passed to flight software without being flagged as such by 
the hardware.  If it is passed a bad code block, the flight 
software has an error in which the length field from the 
uplink protocol is not checked for validity before use.  The 
anomaly team concluded that this was the probable cause 
of the reset. 

3.3 Spirit FLASH Memory Anomaly 
After 17 sols of successful operations, Spirit’s DTE 

signal suddenly dropped out.  Originally, blame was placed 
on weather at the Deep Space Network tracking station, but 
the next few communication windows failed to produce 
any signal.  One UHF window produced only pseudo noise, 
indicating that the vehicle had woken up and turned on the 
radio.  The anomaly team sent commands to Spirit, and it 
occasionally responded with a carrier-only signal.   

Finally, on Sol 21, Spirit sent enough telemetry for 
the team to deduce that the rover was rebooting over and 
over and that it was not successfully accessing the FLASH 
memory.  The battery state-of-charge and the thermal 
telemetry indicated that the rover had not shut down 
overnight.  The operations team commanded an emergency 
shutdown, but that command failed. 

The next sol, the anomaly team sent a command to 
place the rover in “crippled mode.”  In this mode, the flight 
software does not use the FLASH memory file system.  
This command appeared to fail as well, because the rover 
would not respond to any commands.  An hour later, the 
rover autonomously initiated DTE communication at 11:00 
LST, the fault window time.  The batteries had drained 
overnight, so the BCB had disconnected them from the 
power bus, and the rover browned out (as expected).  
During this window, the anomaly team verified that Spirit 
had stopped rebooting, proving that the crippled mode 
command had indeed worked.  Crippled mode is a volatile 
configuration, reset each shutdown, so the operations team 
had to repeat the command each sol to prevent the 
continuous reboots, until the anomaly team could come up 
with a fix. 

After reconstructing the small amount of telemetry 
retrieved from non-volatile memory, the anomaly team 
determined that Spirit experienced only three reboots on 
the first sol.  The repeating reset condition started early the 
next sol, when the rover woke up for the UHF window.  

Within a week, the anomaly team determined that the 
problem was a design error in the DOS file system library 
code.  The file system mechanism uses a representation of 
the file system structure (i.e., a Table of Contents or TOC) 
in RAM, to optimize performance.  This TOC is essentially 
an array with the file name, attributes, date, time, file size, 
and a pointer to the starting point of the file/directory in the 
FLASH memory. 

When a file is deleted from the file system, the TOC 
is changed to reflect that the file has been deleted, but the 
size of the TOC does not shrink.  Even though the data 
management team rigorously managed and deleted files, 
the TOC retained the knowledge of all the files that ever 
existed in FLASH file system.  So after collecting 
telemetry for seven months of cruise, one day of EDL, one 



week of deployments, standup and egress, and one week of 
driving and science, the TOC grew to consume all the 
available RAM.   

This growth was not supposed to occur.  
Configuration errors in the flight software allowed the TOC 
to expand unbounded.  When the out-of-memory condition 
occurred, a critical task silently suspended (the silence was 
another error in the code).  With this critical task 
suspended, many functions that access the file system were 
blocked from working correctly.  In particular, the 
shutdown algorithm could not power off the CPU, even 
though the “delayed reset” allowed enough time.  

Each time the out-of-memory event occurred, the 
system would reset (after the delayed reset time).  Many of 
the on-board communication windows and the operation 
team’s commanded windows were interrupted by these 
resets.  The reason a reset or the use of a different flight 
software image wouldn’t clear the problem is that the TOC 
is recreated during initialization when the FLASH memory 
is mounted, causing another out-of-memory event.  
Crippled mode stopped the resets because the FLASH file 
system is not used in this mode, and this TOC is not 
created. 

Two weeks after the first symptoms were observed, 
the anomaly team reformatted the FLASH memory (which 
also deleted the TOC), so upon initialization, the size of the 
recreated TOC was small again.  Spirit was temporarily 
cured.  For the next two months, the problem was avoided 
by careful management of the total number of files allowed 
in the FLASH file system.  A new flight software load 
eventually fixed the deleted-file-representation problem in 
the TOC, as well as other vulnerabilities in the system.5 

3.4 Opportunity’s Failed-on Heater 
On Opportunity’s first evening on Mars (the same day 

Spirit was put into crippled mode), the power team 
observed an unexpected 0.5 amp current, which appeared 
around 23:00 LST and disappeared around 09:30 LST.  The 
battery state-of-charge was also lower than predicted.  The 
anomaly team investigated and discovered a failed-on 
(closed) heater switch for an IDD joint.  The external 
thermostat box cuts off the heater circuit when the external 
temperatures warm up, but allows the heater to turn on 
when the temperature cools down (per design).  Multiple 
attempts to open the switch failed.  The effect was an extra 
180 W-hrs of precious energy consumed every night.   

The corrective action was to implement a flight 
software modification that would purposefully remove the 
batteries from the power bus at night and power off all of 
the devices, including the BCB and survival heaters.  The 
algorithm is called “deep sleep” and, when enabled, it 

                                                             
5 See Ref. [3] for more details on this anomaly. 

autonomously boots up the vehicle at 18:30 LST each night 
to pull the batteries offline.  The reason the algorithm does 
not remove the batteries from the power bus whenever any 
shutdown occurs, is that the BCB hardware fault protection 
will put the batteries back online when it detects the bus 
voltage dropping as the sun sets. So the deep sleep 
algorithm has to wait for the sun to set low enough that no 
current is available from the solar arrays.  The operations 
team can temporarily disable deep sleep mode if an early 
morning UHF communication window is scheduled. 

4 Conclusion 
The MER surface fault protection design is 

incorporated throughout the flight system, in both hardware 
and software.  Autonomously, the rovers maintain a safe 
thermal and energy balance, as well as communicate to 
orbiting assets or directly to Earth.  Throughout cruise, 
landing, and over one year of surface operations, the 
overall system has met many challenges and proven itself 
in practice on Mars. 
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